RPi 3 and the real time kernel

As a beta tester for MOD I thought it would be cool to play around with netJACK which is supported on the MOD Duo. The MOD Duo can run as a JACK master and you can connect any JACK slave to it as long as it runs a recent version of JACK2. This opens a plethora of possibilities of course. I’m thinking about building a kind of sidecar device to offload some stuff to using netJACK, think of synths like ZynAddSubFX or other CPU greedy plugins like fat1.lv2. But more on that in a later blog post.

So first I need to set up a sidecar device and I sacrificed one of my RPi’s for that, an RPi 3. Flashed an SD card with Raspbian Jessie Lite and started to do some research on the status of real time kernels and the Raspberry Pi because I’d like to use a real time kernel to get sub 5ms system latency. I compiled real time kernels for the RPi before but you had to jump through some hoops to get those running so I hoped things would have improved somewhat. Well, that’s not the case so after having compiled a first real time kernel the RPi froze as soon as I tried to runapt-get install rt-tests. After having applied a patch to fix how the RPi folks implemented the FIQ system the kernel compiled without issues:

Linux raspberrypi 4.9.33-rt23-v7+ #2 SMP PREEMPT RT Sun Jun 25 09:45:58 CEST 2017 armv7l GNU/Linux

And the RPi seems to run stable with acceptable latencies:

Histogram of the latency on the RPi with a real time kernel during 300000 cyclictest loops
Histogram of the latency on the RPi with a real time kernel during 300000 cyclictest loops

So that’s a maximum latency of 75 µs, not bad. I also spotted some higher values around 100 but that’s still okay for this project. The histogram was created with mklatencyplot.bash. I used a different invocation of cyclictest though:

cyclictest -Sm -p 80 -n -i 500 -l 300000

And I ran hackbench in the background to create some load on the RPi:

(while true; do hackbench > /dev/null; done) &

Compiling a real time kernel for the RPi is still not a trivial thing to do and it doesn’t help that the few howto’s on the interwebs are mostly copy-paste work, incomplete and contain routines that are unclear or even unnecessary. One thing that struck me too is that the howto’s about building kernels for RPi’s running Raspbian don’t mention the make deb-pkg routine to build a real time kernel. This will create deb packages that are just so much easier to transfer and install then rsync’ing the kernel image and modules. Let’s break down how I built a real time kernel for the RPi 3.

First you’ll need to git clone the Raspberry Pi kernel repository:

git clone -b 'rpi-4.9.y' --depth 1 https://github.com/raspberrypi/linux.git

This will only clone the rpi-4.9.y branch into a directory called linux without any history so you’re not pulling in hundreds of megs of data. You will also need to clone the tools repository which contains the compiler we need to build a kernel for the Raspberry Pi:

git clone https://github.com/raspberrypi/tools.git

This will end up in the tools directory. Next step is setting some environment variables so subsequent make commands pick those up:

export KERNEL=kernel7
export ARCH=arm
export CROSS_COMPILE=/path/to/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-
export CONCURRENCY_LEVEL=$(nproc)

The KERNEL variable is needed to create the initial kernel config. The ARCH variable is to indicate which architecture should be used. The CROSS_COMPILE variable indicates where the compiler can be found. The CONCURRENCY_LEVEL variable is set to the number of cores to speed up certain make routines like cleaning up or installing the modules (not the number of jobs, that is done with the -j option of make).

Now that the environment variables are set we can create the initial kernel config:

cd linux
make bcm2709_defconfig

This will create a .config inside the linux directory that holds the initial kernel configuration. Now download the real time patch set and apply it:

cd ..
wget https://www.kernel.org/pub/linux/kernel/projects/rt/4.9/patch-4.9.33-rt23.patch.xz
cd linux
xzcat ../patch-4.9.33-rt23.patch.xz | patch -p1

Most howto’s now continue with building the kernel but that will result in a kernel that will freeze your RPi because of the FIQ system implementation that causes lock ups of the RPi when using threaded interrupts which is the case with real time kernels. That part needs to be patched so download the patch and dry-run it:

cd ..
wget https://www.osadl.org/monitoring/patches/rbs3s/usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch
cd linux
patch -i ../usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch -p1 --dry-run

You will notice one hunk will fail, you will have to add that stanza manually so note which hunk it is for which file and at which line it should be added. Now apply the patch:

patch -i ../usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch -p1

And add the failed hunk manually with your favorite editor. With the FIQ patch in place we’re almost set for compiling the kernel but before we can move on to that step we need to modify the kernel configuration to enable the real time patch set. I prefer doing that with make menuconfig. You will need the libncurses5-dev package to run this commando so install that with apt-get install libncurses5-dev. Then select Kernel Features - Preemption Model - Fully Preemptible Kernel (RT) and select Exit twice. If you’re asked if you want to save your config then confirm. In the Kernel features menu you could also set the the timer frequency to 1000 Hz if you wish, apparently this could improve USB throughput on the RPi (unconfirmed, needs reference). For real time audio and MIDI this setting is irrelevant nowadays though as almost all audio and MIDI applications use the hr-timer module which has a way higher resolution.

With our configuration saved we can start compiling. Clean up first, then disable some debugging options which could cause some overhead, compile the kernel and finally create ready to install deb packages:

make clean
scripts/config --disable DEBUG_INFO
make -j$(nproc) deb-pkg

Sit back, enjoy a cuppa and when building has finished without errors deb packages should be created in the directory above the linux one. Copy the deb packages to your RPi and install them on the RPi with dpkg -i. Open up /boot/config.txt and add the following line to it:


Now reboot your RPi and it should boot with the realtime kernel. You can check with uname -a:

Linux raspberrypi 4.9.33-rt23-v7+ #2 SMP PREEMPT RT Sun Jun 25 09:45:58 CEST 2017 armv7l GNU/Linux

Since Rasbian uses almost the same kernel source as the one we just built it is not necessary to copy any dtb files. Also running mkknlimg is not necessary anymore, the RPi boot process can handle vmlinuz files just fine.

The basis of the sidecar unit is now done. Next up is tweaking the OS and setting up netJACK.

Edit: there’s a thread on LinuxMusicians referring to this article which already contains some very useful additional information.

RPi 3 and the real time kernel

Moved to Fuga

Moving my VPS from VMware to Fuga was successful. First I copied the VMDK from the ESXi host to a Fuga instance with enough storage:

scp some.esxi.host:/vmfs/volumes/storage-node/autostatic1.autostatic.cyso.net/autostatic1.autostatic.cyso.net-flat.vmdk ./

And then converted it to QCOW2 with qemu-img:

qemu-img convert -O qcow2 autostatic1.autostatic.cyso.net-flat.vmdk autostatic1.autostatic.cyso.net.qcow2

Next step was mounting it with guestmount:

guestmount -a /var/www/html/images/autostatic1.autostatic.cyso.net.qcow2 -m /dev/sda8 /mnt/tmp/

And changing some settings, i.e. network and resolvconf. When that was done I unmounted the image:

guestunmount /mnt/tmp

And uploaded it to my Fuga tenant:

openstack image create --disk-format qcow2 --container-format bare --file /path/to/images/autostatic1.autostatic.cyso.net.qcow2 --private autostatic1.autostatic.cyso.net.qcow2

Last step was launching an OpenStack image from this image, I used Ansible for this:

- name: Launch OpenStack instance
  hosts: localhost
  connection: local
  gather_facts: no
    os_flavor: c1.large
    os_network: int1
    os_image: 5b878fee-7071-4e9c-9d1b-f7b129ba0644
    os_hostname: autostatic1.autostatic.cyso.net
    os_portname: int-port200

    - name: Create port
        network: "{{ os_network }}"
          - ip_address: "{{ os_fixed_ip }}"
        name: "{{ os_portname }}"

    - name: Launch instance
        state: present
        name: "{{ os_hostname }}"
        timeout: 200
        flavor: "{{ os_flavor }}"
          - port-name: "{{ os_portname }}"
        security_groups: "{{ os_hostname }}"
        floating_ips: "{{ os_floating_ip }}"
        image: "{{ os_image }}"
          hostname: "{{ os_hostname }}"

And a few minutes later I had a working VPS again. While converting and uploading I made the necessary DNS changes and by the time my VPS was running happily on Fuga all DNS entries pointed to the new IP address.

Moved to Fuga

Using a Qtractor MIDI track for both MIDI and audio

Basically Qtractor only does either MIDI or audio. The MIDI tracks are for processing MIDI and the audio tracks for processing audio. But a MIDI track in Qtractor can also post-process the audio coming out of a synth plug-in with FX plug-ins so it’s a bit more than just a MIDI track.

But what about plug-ins that do both audio and MIDI, like the LV2 version of the autotuner application zita-at1? If you put it in an audio track it will happily autotune all the audio but it won’t accept any incoming MIDI to pitch only to the MIDI notes it is being fed. And no way you can get MIDI into a Qtractor audio track. There’s no MIDI insert plug-in or the possibility to somehow expose MIDI IN ports of a plug-in in an audio track to Jack MIDI or ALSA.

But Qtractor does have a built-in Insert plug-in that can be fed audio from an audio bus and since a Qtractor MIDI track does know how to handle audio would it also know how to deal with such an insert? Well, yes it can which allows you to use a plug-in like the LV2 version of zita-at1 inside a MIDI track.

Setting up buses and tracks

You will need at least one bus and two tracks (of course you can use different bus and track names):

  • AutoTuneMix bus, input only and 2 channels
  • AutoTune MIDI track with dedicated audio outputs (this will create an audio bus called AutoTune)
  • AutoTuneMix audio track with the AutoTuneMix as input bus

Alternatively you could also skip the use of dedicated audio outputs and have the MIDI track output to the Master bus. This way you avoid the risk of introducing extra latency and the need to set up extra connections. You do lose the flexibility then to do basic stuff on the outcoming audio like panning or adjusting the gain. Which you can also workaround of course by using additional panning and/or gain plug-ins.

Once you’ve created the bus and the tracks insert the following plug-ins into the AutoTune MIDI track:

  • Insert
  • Any pre-processing effects plug-ins (like a compressor) – optional
  • LV2 version of zita-at1 autotuner
  • Any post-processing effects plug-ins (like a reverb) – optional

Insert them into this specific order. It is also possible to do the post-processing in the AutoTuneMix audio track. Now open the Properties window of the Insert plug-in and then open the Returns window. Connect the mic input of your audio device to the Insert/in ports as shown below.

Qtractor AutoTune Insert
Qtractor AutoTune Insert

Connect the AutoTune bus outputs to the AutoTuneMix inputs:

Qtractor Connections
Qtractor Connections

Create a MIDI clip with notes to autotune

Create a MIDI clip with the notes you would like to get autotuned in the AutoTune MIDI track, put the play-head on the right position and press play. Now incoming audio from the mic input of your audio device should get autotuned to the MIDI notes you entered in the MIDI clip:

Qtractor Mixer with LV2 version of zita-at1 autotuner
Qtractor Mixer with LV2 version of zita-at1 autotuner

As you can see both MIDI and audio goes through the AT1 autotuner plug-in and the outcoming audio is being fed into the AutoTuneMix track where you can do the rest of your post-processing if you wish.

Using a Qtractor MIDI track for both MIDI and audio

The Zynthian project

Recently I found out that I was not the only one trying to build a synth module out of a Raspberry Pi with ZynAddSubFX. The Zynthian project is trying to achieve the exact same goal and so far it looks very promising. I contacted the project owner to ask if he would be interested in collaborating. I got a reply promptly and we both agreed it would be a good idea to join forces. The Zynthian project has all the things that I still had to set up already in place but I think I can still help out. The Zynthian set-up might benefit from some optimizations like a real-time kernel and things like boot time can be improved. Also I could help out testing, maybe do some packaging. And if there’s a need for things like a repository, web server or other hosting related stuff I could provide those.

Protoype of the Zynthian project
Zynthian prototype

I’m very happy with these developments of our projects converging. Check out the Zynthian blog for more information on the current state of the project.

The Zynthian project

Switched to HTTPS

The title says it all. I bought a SSL certificate at Xolphin, installed it and then I had to hunt down all the things that didn’t work anymore. I even managed to render the HTTP version of autostatic.com unreachable for  about a day. But now everything seems to be working so I activated a rewrite rule that redirects all HTTP traffic to HTTPS. There are some bits that might not work as expected (embedded videos not displaying, warnings about unsecure content) but most of my blog should be accessible now in a secure way. If you encounter any issues, please let me know.

autostatic https

The certificate I’m using is a Comodo Positive SSL certificate with Domain Validation. So I’m getting a padlock but not the green address bar, for a green bar you need at least an Extended Validation certificate and that gets a bit expensive. I generated an Apache SSL configuration with the Mozilla SSL Configuration Generator but left out the OCSP stuff. I did add the HSTS header (HTTP Strict Transport Security header) because it really helped with getting that desired A+ rating in the Qualys SSL Labs SSL Server Test.

Switched to HTTPS

Working on a stable setup

Next step for the synth module project was to get the Raspberry Pi 2 to run in a stable manner. It seems like I’m getting close or that I’m already there. First I built a new RT kernel based on the 4.1.7 release of the RPi kernel. Therefore I had to checkout an older git commit because the RPi kernel is already at 4.1.8. The 4.1.7-rt8 patchset applied cleanly and the kernel booted right away:

pi@rpi-jessie:~$ uname -a
 Linux rpi-jessie 4.1.7-rt8-v7 #1 SMP PREEMPT RT Sun Sep 27 19:41:20 CEST 2015 armv7l GNU/Linux

After cleaning up my cmdline.txt it seems to run fine without any hiccups so far. My cmdline.txt now looks like this:

dwc_otg.lpm_enable=0 dwc_otg.speed=1 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 rootflags=data=writeback elevator=deadline rootwait

Setting USB speed to Full Speed (so USB1.1) by using dwc_otg.speed=1 is necessary otherwise the audio coming out of my USB DAC sounds distorted.

I’m starting ZynAddSubFX as follows:

zynaddsubfx -r 48000 -b 64 -I alsa -O alsa -P 7777 -L /usr/share/zynaddsubfx/banks/SynthPiano/0040-BinaryPiano2.xiz

With a buffer of 64 frames latency is very low and so far I haven’t run into instruments that cause a lot of xruns with this buffer size. Not even the multi-layered ones from Will Godfrey.

So I guess it’s time for the next step, creating a systemd startup unit so that ZynAddSubFX starts at boot. And it would be nice if USB MIDI devices would get connected automatically. And if you could see somehow which instrument is loaded, an LCD display would be great for this. Also I’d like to have the state of the synth saved, maybe by saving an .xmz file whenever there’s a state change or on regular intervals. And the synth module will need a housing or casing. Well, let’s get the software stuff down first.

Working on a stable setup

Building a synth module using a Raspberry Pi

Ever since I did an acid set with my brother in law at the now closed bar De Vinger I’ve been playing with the idea of creating some kind of synth module out of a Raspberry Pi. The Raspberry Pi 2 should be powerful enough to run a complex synth like ZynAddSubFX. When version  2.5.1 of that synth got released the idea resurfaced again since that version allows to remote control a running headless instance of ZynAddSubFX via OSC that is running on for instance a Raspberry Pi. I looked at this functionality before a few months ago but the developer was just starting to implement this feature so it wasn’t very usable yet.

zynaddsubfx-ext-guiBut with the release of ZynAddSubFX 2.5.1 the stabilitity of the zynaddsubfx-ext-gui utility has improved to such an extent that it’s a very usable tool. In the above screenshot you can see zynaddsubfx-ext-gui running on my notebook with Ubuntu 14.04 controlling a remote instance of ZynAddSubFX running on a Raspberry Pi.

So basically all the necessary building blocks for a synth module are there. Coupled with my battered Akai MPK Mini and a cheap PCM2704 USB DAC I started setting up a test setup.

For the OS on the Raspberry Pi 2 I chose Debian Jessie as I feel Raspbian isn’t getting you the most out of your Pi. It’s running a 4.1.6 kernel with the 4.1.5-rt5 RT patch set, which applied cleanly and seems to run so far:

pi@rpi-jessie:~$ uname -a
Linux rpi-jessie 4.1.6-rt0-v7 #1 SMP PREEMPT RT Sun Sep 13 21:01:19 CEST 2015 armv7l GNU/Linux

This isn’t a very clean solution of course so let’s hope a real 4.1.6 RT patch set will happen or maybe I could give the 4.1.6 PREEMPT kernel that rpi-update installed a try. I packaged a headless ZynAddSubFX for the RPi on my notebook using pbuilder with a Jessie armhf root and installed the package for Ubuntu 14.04 from the KXStudio repos. I slightly overclocked the RPi to 1000MHz and set the CPU scaling governor to performance. The filesystem is Ext4, mounted with noatime,nobarrier,data=writeback.

To get the USB audio interface and the USB MIDI keyboard into line I had to add the following line to my /etc/modprobe.d/alsa.conf file:

options snd-usb-audio index=0,1 vid=0x08bb,0x09e8 pid=0x2704,0x007c

This makes sure the DAC gets loaded as the first audio interface, so with index 0. Before adding this line the Akai would claim index 0 and since I’m using ZynAddSubFX with ALSA it couldn’t find an audio interface. But all is fine now:

pi@rpi-jessie:~$ cat /proc/asound/cards
 0 [DAC            ]: USB-Audio - USB Audio DAC
                      Burr-Brown from TI USB Audio DAC at usb-bcm2708_usb-1.3, full speed
 1 [mini           ]: USB-Audio - MPK mini
                      AKAI PROFESSIONAL,LP MPK mini at usb-bcm2708_usb-1.5, full speed

So no JACK as the audio back-end, the output is going directly to ALSA. I’ve decided to do it this way because I will only be running one single application that uses the audio interface so basically I don’t need JACK. And JACK tends to add a bit of overhead, you barely notice this on a PC system but on small systems like the Raspberry Pi JACK can consume a noticeable amount of resources. To make ZynAddSubFX use ALSA as the back-end I’m starting it with the -O alsa option:

zynaddsubfx -r 48000 -b 256 -I alsa -O alsa -P 7777

The -r option sets the sample rate, the -b option sets the buffer size, -I is for the MIDI input and the -P option sets the UDP port on which ZynAddSubFX starts listening for OSC messages. And now that’s the cool part. If you then start zynaddsubfx-ext-gui on another machine on the network and tell it to connect to this port it starts only the GUI and sends all changes to the GUI as OSC messages to the headless instance it is connected to:

zynaddsubfx-ext-gui osc.udp://

Next up is stabilizing this setup and testing with other kernels or kernel configs as the kernel I’ve cooked up now isn’t a viable long-term solution. And I’d like to add a physical MIDI in and maybe a display like described on the Samplerbox site. And the project needs a casing of course.

Building a synth module using a Raspberry Pi

CarPC v1.0

As our collection of MP3 CD’s was wearing out I thought why not put a small embedded board with a big drive in our car? I dug up a Cubieboard2 that was gathering dust and started hacking. The goal:

  • Small system based on Debian Jessie
  • MPD to serve the audio files
  • Remote control via WiFi
  • Big drive
  • Acceptable boot time
  • Basic protection against file system corruption

Putting a bog standard Debian Jessie on the Cubieboard2 was quite straightforward with the help of the linux-sunxi.org wiki. The board booted with the standard kernel but unfortunately no sound. Luckily I had just received some ultra-cheap PCM2704 USB audio interfaces and these worked and sounded great too. WiFi worked out of the box but the rtl8192cu driver of the 3.16 kernel for the Realtek RTL8192CU chipset has the tendency to quickly go into suspension and as this driver doesn’t have any power management options I ended up with a hacky for loop in /etc/rc.local that pings all IP’s in the DHCP range. I quickly dropped this iffy set-up as it just didn’t work out that well and ended up using a DKMS based solution that made it possible to control power management of the WiFi dongle. Next hurdle was hostapd that stopped working with this alternative driver. But with the help of the hostapd-rtl871xdrv GitHub repo I managed to cook up a fully working hostapd Debian package.

Next up was the hard drive. I first tried a USB drive but the Cubieboard2 just couldn’t provide enough juice to power the drive properly together with the WiFi dongle. I also tried with my Raspberry Pi’s but those had the same issues. So I had to resort to a SATA drive. Of course I bought a 3.5″ drive first because those are cheaper. But you can’t power a 3.5″ drive with the SATA cable that comes with the Cubieboard2 and as I had a bit of a deadline I returned it for a 2.5″ drive and that works like a charm. I installed MPD, copied my music collection to the hard drive, fired up MPD and was greeted with a segmentation fault. Apparently the Jessie MPD package has issues with the sticker database file so I installed MPD from the backports repo and that version runs without any complaints so far.

For some basic protection against corruption by sudden power loss I created separate partitions for /home and /var on the SD card that are mounted rw with a couple of options to reduce corruption (sync,commit=1,data=journal) and / is mounted ro, just like the big hard drive with the audio files. /tmp is being mounted as tmpfs in RAM. Boot time is about 15 seconds and I’m OK with that. To remotely shut down the CarPC via WiFi I use a JuiceSSH homescreen shortcut of a connection that runs a simple shutdown -h now snippet.

After I had mounted everything in our car the thing wouldn’t boot though. Swapped the 1A USB car adapter for a 2.1A version and then the CarPC came up properly. Installed MPDroid on my Nexus 5 to control MPD via WiFi and so far, so good!


Cubieboard2 based CarPC



Sometimes the CarPC became unreachable via WiFi. The culprit was that the DHCP service (udhcpd) didn’t always come up because it was sometimes started before hostapd. I fixed this by copying /var/run/systemd/generator.late/udhcpd.service to /etc/systemd/system/udhcpd-custom.service and adding hostapd.service to the After line and adding a Requires=hostapd.service line. I also added a [Install] stanza with the line WantedBy=multi-user.target. I then disabled udhcpd.service and enabled udhcpd-custom.service.

Addendum 2

Hostapd didn’t always start flawlessly either so I copied /var/run/systemd/generator.late/hostapd.service to /etc/systemd/system/hostapd-custom.service and added sys-subsystem-net-devices-wlan0.device to the After and Wants lines. Also added an [Install] stanza, disabled hostapd.service and enabled hostapd-custom.service.

CarPC v1.0

Packaging Python Stuff

While packaging Tuna I ran into an issue for which I couldn’t easily find a workaround on the ubiquitous search engine. Tuna depends on some unavailable Python applications so those had to be packaged too. After having successfully tested the packages locally with pbuilder I uploaded them to Launchpad and noticed that they failed to build. Apparently the Python installer setup.py wants to install in /usr/lib/python2.7/site-packages and while that worked fine locally with pbuilder, Launchpad had an issue with that:

Found files in /usr/lib/python2.7/site-packages (must be in dist-packages for python2.7).
dh_builddeb.pkgbinarymangler: dpkg-deb --build debian/python-schedutils .. returned exit code 1
make: *** [binary-arch] Error 1
dpkg-buildpackage: error: /usr/bin/fakeroot debian/rules binary-arch gave error exit status 2

Apparently the files had to be installed in /usr/lib/python2.7/dist-packages but how to instruct the installer to do so without having to resort to ugly hacks? As I couldn’t find any useful answers on the web I asked falkTX on #kxstudio. He said the setup.py installer has a flag to install to dist-packages instead of site-packages, --install-layout deb. So I added that to the debian/rules file and gave it another spin:

#!/usr/bin/make -f
# -*- makefile -*-
# Sample debian/rules that uses debhelper.
# This file was originally written by Joey Hess and Craig Small.
# As a special exception, when this file is copied by dh-make into a
# dh-make output file, you may use that output file without restriction.
# This special exception was added by Craig Small in version 0.37 of dh-make.

# Uncomment this to turn on verbose mode.
#export DH_VERBOSE=1

        dh $@

        python setup.py build

        python setup.py install --skip-build --prefix /usr --root $(CURDIR) --install-layout deb

Now both pbuilder and Launchpad built the package without any issues.

Packaging Python Stuff

LV2 gaining momentum

The number of new LV2 plugins being released is steadily growing. The last couple of months at least the following LV2 plugins have been released:

  • Bitrot (a set of LV2 and LADSPA plugins for glitch effects)
  • beatslash-lv2 (a set of plugins for live beat repeating and beat slicing)
  • deteriorate-lv2 (a set of plugins to deteriorate the sound quality of live inputs)
  • midimsg-lv2 (a set of plugins to transform midi output into usable values to control other plugins)
  • QmidiArp (LV2 plugins of the three QMidiArp modules)
  • x42-plugins (collection of LV2 plugins: tuner, oscillator, x-fader, audio-level meters, midi filters etc.)
  • BLOP-LV2 (port of the LADSPA BLOP plugins)

Haven’t tried them all of them yet but the ones I did try (the QmidiArp modules as plugins and some of the x42 plugins) proved to be very promising. Besides new plugins being released work continues on a great number of plugins, the LV2 framework itself and on tools facilitating in the creation or building of LV2 plugins. Especially falkTX is in the vanguard with his current work on getting his Carla plugin host to work as a LV2 plugin. This would open up a lot of possibilities like using it in hosts that don’t support all plugin frameworks (think Ardour and DSSI support). In the meanwhile the guitarix team continues to add great LV2 plugins to their ever growing collection and Dave Robillard, the main author of LV2, doesn’t sit still either with releasing updated versions of the building blocks that form the LV2 framework.

LV2 gaining momentum