RPi 3 and the real time kernel

As a beta tester for MOD I thought it would be cool to play around with netJACK which is supported on the MOD Duo. The MOD Duo can run as a JACK master and you can connect any JACK slave to it as long as it runs a recent version of JACK2. This opens a plethora of possibilities of course. I’m thinking about building a kind of sidecar device to offload some stuff to using netJACK, think of synths like ZynAddSubFX or other CPU greedy plugins like fat1.lv2. But more on that in a later blog post.

So first I need to set up a sidecar device and I sacrificed one of my RPi’s for that, an RPi 3. Flashed an SD card with Raspbian Jessie Lite and started to do some research on the status of real time kernels and the Raspberry Pi because I’d like to use a real time kernel to get sub 5ms system latency. I compiled real time kernels for the RPi before but you had to jump through some hoops to get those running so I hoped things would have improved somewhat. Well, that’s not the case so after having compiled a first real time kernel the RPi froze as soon as I tried to runapt-get install rt-tests. After having applied a patch to fix how the RPi folks implemented the FIQ system the kernel compiled without issues:

Linux raspberrypi 4.9.33-rt23-v7+ #2 SMP PREEMPT RT Sun Jun 25 09:45:58 CEST 2017 armv7l GNU/Linux

And the RPi seems to run stable with acceptable latencies:

Histogram of the latency on the RPi with a real time kernel during 300000 cyclictest loops
Histogram of the latency on the RPi with a real time kernel during 300000 cyclictest loops

So that’s a maximum latency of 75 µs, not bad. I also spotted some higher values around 100 but that’s still okay for this project. The histogram was created with mklatencyplot.bash. I used a different invocation of cyclictest though:

cyclictest -Sm -p 80 -n -i 500 -l 300000

And I ran hackbench in the background to create some load on the RPi:

(while true; do hackbench > /dev/null; done) &

Compiling a real time kernel for the RPi is still not a trivial thing to do and it doesn’t help that the few howto’s on the interwebs are mostly copy-paste work, incomplete and contain routines that are unclear or even unnecessary. One thing that struck me too is that the howto’s about building kernels for RPi’s running Raspbian don’t mention the make deb-pkg routine to build a real time kernel. This will create deb packages that are just so much easier to transfer and install then rsync’ing the kernel image and modules. Let’s break down how I built a real time kernel for the RPi 3.

First you’ll need to git clone the Raspberry Pi kernel repository:

git clone -b 'rpi-4.9.y' --depth 1 https://github.com/raspberrypi/linux.git

This will only clone the rpi-4.9.y branch into a directory called linux without any history so you’re not pulling in hundreds of megs of data. You will also need to clone the tools repository which contains the compiler we need to build a kernel for the Raspberry Pi:

git clone https://github.com/raspberrypi/tools.git

This will end up in the tools directory. Next step is setting some environment variables so subsequent make commands pick those up:

export KERNEL=kernel7
export ARCH=arm
export CROSS_COMPILE=/path/to/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-
export CONCURRENCY_LEVEL=$(nproc)

The KERNEL variable is needed to create the initial kernel config. The ARCH variable is to indicate which architecture should be used. The CROSS_COMPILE variable indicates where the compiler can be found. The CONCURRENCY_LEVEL variable is set to the number of cores to speed up certain make routines like cleaning up or installing the modules (not the number of jobs, that is done with the -j option of make).

Now that the environment variables are set we can create the initial kernel config:

cd linux
make bcm2709_defconfig

This will create a .config inside the linux directory that holds the initial kernel configuration. Now download the real time patch set and apply it:

cd ..
wget https://www.kernel.org/pub/linux/kernel/projects/rt/4.9/patch-4.9.33-rt23.patch.xz
cd linux
xzcat ../patch-4.9.33-rt23.patch.xz | patch -p1

Most howto’s now continue with building the kernel but that will result in a kernel that will freeze your RPi because of the FIQ system implementation that causes lock ups of the RPi when using threaded interrupts which is the case with real time kernels. That part needs to be patched so download the patch and dry-run it:

cd ..
wget https://www.osadl.org/monitoring/patches/rbs3s/usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch
cd linux
patch -i ../usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch -p1 --dry-run

You will notice one hunk will fail, you will have to add that stanza manually so note which hunk it is for which file and at which line it should be added. Now apply the patch:

patch -i ../usb-dwc_otg-fix-system-lockup-when-interrupts-are-threaded.patch -p1

And add the failed hunk manually with your favorite editor. With the FIQ patch in place we’re almost set for compiling the kernel but before we can move on to that step we need to modify the kernel configuration to enable the real time patch set. I prefer doing that with make menuconfig. You will need the libncurses5-dev package to run this commando so install that with apt-get install libncurses5-dev. Then select Kernel Features - Preemption Model - Fully Preemptible Kernel (RT) and select Exit twice. If you’re asked if you want to save your config then confirm. In the Kernel features menu you could also set the the timer frequency to 1000 Hz if you wish, apparently this could improve USB throughput on the RPi (unconfirmed, needs reference). For real time audio and MIDI this setting is irrelevant nowadays though as almost all audio and MIDI applications use the hr-timer module which has a way higher resolution.

With our configuration saved we can start compiling. Clean up first, then disable some debugging options which could cause some overhead, compile the kernel and finally create ready to install deb packages:

make clean
scripts/config --disable DEBUG_INFO
make -j$(nproc) deb-pkg

Sit back, enjoy a cuppa and when building has finished without errors deb packages should be created in the directory above the linux one. Copy the deb packages to your RPi and install them on the RPi with dpkg -i. Open up /boot/config.txt and add the following line to it:

kernel=vmlinuz-4.9.33-rt23-v7+

Now reboot your RPi and it should boot with the realtime kernel. You can check with uname -a:

Linux raspberrypi 4.9.33-rt23-v7+ #2 SMP PREEMPT RT Sun Jun 25 09:45:58 CEST 2017 armv7l GNU/Linux

Since Rasbian uses almost the same kernel source as the one we just built it is not necessary to copy any dtb files. Also running mkknlimg is not necessary anymore, the RPi boot process can handle vmlinuz files just fine.

The basis of the sidecar unit is now done. Next up is tweaking the OS and setting up netJACK.

Edit: there’s a thread on LinuxMusicians referring to this article which already contains some very useful additional information.

RPi 3 and the real time kernel

Working on a stable setup

Next step for the synth module project was to get the Raspberry Pi 2 to run in a stable manner. It seems like I’m getting close or that I’m already there. First I built a new RT kernel based on the 4.1.7 release of the RPi kernel. Therefore I had to checkout an older git commit because the RPi kernel is already at 4.1.8. The 4.1.7-rt8 patchset applied cleanly and the kernel booted right away:

pi@rpi-jessie:~$ uname -a
 Linux rpi-jessie 4.1.7-rt8-v7 #1 SMP PREEMPT RT Sun Sep 27 19:41:20 CEST 2015 armv7l GNU/Linux

After cleaning up my cmdline.txt it seems to run fine without any hiccups so far. My cmdline.txt now looks like this:

dwc_otg.lpm_enable=0 dwc_otg.speed=1 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 rootflags=data=writeback elevator=deadline rootwait

Setting USB speed to Full Speed (so USB1.1) by using dwc_otg.speed=1 is necessary otherwise the audio coming out of my USB DAC sounds distorted.

I’m starting ZynAddSubFX as follows:

zynaddsubfx -r 48000 -b 64 -I alsa -O alsa -P 7777 -L /usr/share/zynaddsubfx/banks/SynthPiano/0040-BinaryPiano2.xiz

With a buffer of 64 frames latency is very low and so far I haven’t run into instruments that cause a lot of xruns with this buffer size. Not even the multi-layered ones from Will Godfrey.

So I guess it’s time for the next step, creating a systemd startup unit so that ZynAddSubFX starts at boot. And it would be nice if USB MIDI devices would get connected automatically. And if you could see somehow which instrument is loaded, an LCD display would be great for this. Also I’d like to have the state of the synth saved, maybe by saving an .xmz file whenever there’s a state change or on regular intervals. And the synth module will need a housing or casing. Well, let’s get the software stuff down first.

Working on a stable setup

Building a synth module using a Raspberry Pi

Ever since I did an acid set with my brother in law at the now closed bar De Vinger I’ve been playing with the idea of creating some kind of synth module out of a Raspberry Pi. The Raspberry Pi 2 should be powerful enough to run a complex synth like ZynAddSubFX. When version  2.5.1 of that synth got released the idea resurfaced again since that version allows to remote control a running headless instance of ZynAddSubFX via OSC that is running on for instance a Raspberry Pi. I looked at this functionality before a few months ago but the developer was just starting to implement this feature so it wasn’t very usable yet.

zynaddsubfx-ext-guiBut with the release of ZynAddSubFX 2.5.1 the stabilitity of the zynaddsubfx-ext-gui utility has improved to such an extent that it’s a very usable tool. In the above screenshot you can see zynaddsubfx-ext-gui running on my notebook with Ubuntu 14.04 controlling a remote instance of ZynAddSubFX running on a Raspberry Pi.

So basically all the necessary building blocks for a synth module are there. Coupled with my battered Akai MPK Mini and a cheap PCM2704 USB DAC I started setting up a test setup.

For the OS on the Raspberry Pi 2 I chose Debian Jessie as I feel Raspbian isn’t getting you the most out of your Pi. It’s running a 4.1.6 kernel with the 4.1.5-rt5 RT patch set, which applied cleanly and seems to run so far:

pi@rpi-jessie:~$ uname -a
Linux rpi-jessie 4.1.6-rt0-v7 #1 SMP PREEMPT RT Sun Sep 13 21:01:19 CEST 2015 armv7l GNU/Linux

This isn’t a very clean solution of course so let’s hope a real 4.1.6 RT patch set will happen or maybe I could give the 4.1.6 PREEMPT kernel that rpi-update installed a try. I packaged a headless ZynAddSubFX for the RPi on my notebook using pbuilder with a Jessie armhf root and installed the package for Ubuntu 14.04 from the KXStudio repos. I slightly overclocked the RPi to 1000MHz and set the CPU scaling governor to performance. The filesystem is Ext4, mounted with noatime,nobarrier,data=writeback.

To get the USB audio interface and the USB MIDI keyboard into line I had to add the following line to my /etc/modprobe.d/alsa.conf file:

options snd-usb-audio index=0,1 vid=0x08bb,0x09e8 pid=0x2704,0x007c

This makes sure the DAC gets loaded as the first audio interface, so with index 0. Before adding this line the Akai would claim index 0 and since I’m using ZynAddSubFX with ALSA it couldn’t find an audio interface. But all is fine now:

pi@rpi-jessie:~$ cat /proc/asound/cards
 0 [DAC            ]: USB-Audio - USB Audio DAC
                      Burr-Brown from TI USB Audio DAC at usb-bcm2708_usb-1.3, full speed
 1 [mini           ]: USB-Audio - MPK mini
                      AKAI PROFESSIONAL,LP MPK mini at usb-bcm2708_usb-1.5, full speed

So no JACK as the audio back-end, the output is going directly to ALSA. I’ve decided to do it this way because I will only be running one single application that uses the audio interface so basically I don’t need JACK. And JACK tends to add a bit of overhead, you barely notice this on a PC system but on small systems like the Raspberry Pi JACK can consume a noticeable amount of resources. To make ZynAddSubFX use ALSA as the back-end I’m starting it with the -O alsa option:

zynaddsubfx -r 48000 -b 256 -I alsa -O alsa -P 7777

The -r option sets the sample rate, the -b option sets the buffer size, -I is for the MIDI input and the -P option sets the UDP port on which ZynAddSubFX starts listening for OSC messages. And now that’s the cool part. If you then start zynaddsubfx-ext-gui on another machine on the network and tell it to connect to this port it starts only the GUI and sends all changes to the GUI as OSC messages to the headless instance it is connected to:

zynaddsubfx-ext-gui osc.udp://10.42.0.83:7777

Next up is stabilizing this setup and testing with other kernels or kernel configs as the kernel I’ve cooked up now isn’t a viable long-term solution. And I’d like to add a physical MIDI in and maybe a display like described on the Samplerbox site. And the project needs a casing of course.

Building a synth module using a Raspberry Pi

Raspberry Pi Revisited

When the Raspberry Pi 2 was released I certainly got curious. Would it be really better than it’s little brother? As soon as it got available in The Netherlands I bought it and sure this thing flies compared to the Raspberry Pi 1. The four cores and 1GB of memory are certainly an improvement. The biggest improvement though is the shift from ARMv6 to ARMv7. Now you can really run basically anything on it and thus I soon parted from Raspbian and I’m now running plain Debian Jessie armhf on the RPi.

So is everything fine and dandy with the RPi2? Well, no. It still uses the poor USB implementation and audio output. And it was quite a challenge to prepare it for its intended use: a musical instrument. To my great surprise a new version of the Wolfson Audio Card was available too for the new Raspberry Pi board layout so as soon as people reported they got it to work with the RPi2 I ordered one too.

 

http://community.emlid.com/t/raspberry-2-realtime-kernel-image/112/12

Cirrus Logic Audio Card for Raspberry Pi

One of the first steps to make the device suitable for use as a musical device was to build a real-time kernel for it. Building the kernel itself was quite easy as the RT patchset of the kernel being used at the moment by the Raspberry Foundation (3.18) applied cleanly and it also booted without issues. But after a few minutes the RPi2 would lock up without logging anything. Fortunately there were people on the same boat as me and with the help of the info and patches provided by the Emlid community I managed to get my RPi2 stable with a RT kernel.

Next step was to get the right software running so I dusted off my RPi repositories and added a Jessie armhf repo. With the help of fundamental the latest version of ZynAddSubFX now runs like charm with very acceptable latencies, when using not all too elaborate instrument patches Zyn is happy with an internal latency of 64/48000=1.3ms. I haven’t measured the total round-trip latency but it probably stays well below 10ms. LinuxSampler with the Salamander Grand Piano sample pack also performs a lot better than on the RPi1 and when using ALSA directly I barely get any underruns with a slightly higher buffer setting.

I’d love to get Guitarix running on the RPi2 with the Cirrus Logic Audio Card so that will be the next challenge.

Raspberry Pi Revisited

Resolved JACK issues on notebook

Finally got around troubleshooting the issues I was facing with JACK on my notebook, a BTO that is actually a Clevo W170ER. Somehow I couldn’t go lower than -p128 with USB audio interfaces. When I thought I had tried every option, even disabling hyperthreading, I noticed two unidentified entries in my lsusb output:

Bus 001 Device 003: ID 8087:07da Intel Corp. 
Bus 002 Device 003: ID 5986:0401 Acer, Inc

The first entry is a Bluetooth adapter and the second entry is a webcam. Both devices are unnecessary when making music so I thought, why not unbind them. First I had to figure out their respective bus ID’s:

$ tree /sys/bus/usb/drivers/usb
/sys/bus/usb/drivers/usb
??? 1-1 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1
??? 1-1.3 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.3
??? 2-1 -> ../../../../devices/pci0000:00/0000:00:1d.0/usb2/2-1
??? 2-1.6 -> ../../../../devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.6
??? bind
??? uevent
??? unbind
??? usb1 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1
??? usb2 -> ../../../../devices/pci0000:00/0000:00:1d.0/usb2
??? usb3 -> ../../../../devices/pci0000:00/0000:00:14.0/usb3
??? usb4 -> ../../../../devices/pci0000:00/0000:00:14.0/usb4

Since the Bluetooth adapter sits on bus 1 and the webcam on bus two their respective ID’s should be 1-1 and 2-1. So I echoed the ID’s to the unbind file in the same directory:

$ echo -n "1-1" | sudo tee /sys/bus/usb/drivers/usb/unbind
$ echo -n "2-1" | sudo tee /sys/bus/usb/drivers/usb/unbind

Good riddance:

$ lsusb
Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Then I started JACK again with -p64 using an USB audio interface connected to bus 3 (so no rate matching hub in between) and no more xruns, not even with a generic kernel and using WiFi and all. Next hurdle is the onboard sound. Below -p128 I get bursts of massive xruns and so far I didn’t manage to pinpoint the culprit.

Edit #1: I’ve found out that the Bluetooth adapter is the main bottleneck. Also, by echoing the aformentioned ID’s (1-1 and 2-1) you disable the whole USB bus apparently. To disable just the USB device echo the last ID in the respective path names, so for the Bluetooth adapter that’s 1-1.3 and for the webcam 2-1.6. This way you can still use the USB bus on which these devices are residing. In my case disabling the whole bus is not an option, this would mean I’d have to connect all my USB interfaces to bus 3 (bus 4 doesn’t have any external inputs) which could result in these devices getting in each other’s way with regard to bandwidth. After echoing the ID’s the output of the tree command looks like this:

$ tree /sys/bus/usb/drivers/usb
/sys/bus/usb/drivers/usb
??? 1-1 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1/1-1
??? 2-1 -> ../../../../devices/pci0000:00/0000:00:1d.0/usb2/2-1
??? bind
??? uevent
??? unbind
??? usb1 -> ../../../../devices/pci0000:00/0000:00:1a.0/usb1
??? usb2 -> ../../../../devices/pci0000:00/0000:00:1d.0/usb2
??? usb3 -> ../../../../devices/pci0000:00/0000:00:14.0/usb3
??? usb4 -> ../../../../devices/pci0000:00/0000:00:14.0/usb4

The lsusb command still shows the devices though.

Edit #2: unbinding drivers like described above won’t persist across reboots. If you’d like to make the unbinding persistent you could add the unbind command to /etc/rc.local or create a script that runs at login. There are other options of course like blacklisting the Bluetooth drivers.

Resolved JACK issues on notebook

Exit BeagleBone Black, hello Cubieboard2!

Put up my BeagleBone Black for sale. It was gathering dust, somehow this board doesn’t appeal to me. Biggest drawback is that it seems to be very picky with power adapters. If you don’t use a linear power adapter USB devices might not work properly. And that was exactly the issue I was facing, I just couldn’t get my USB audio interfaces to work on the BBB. So I lost interest because well, that’s what I bought the device for, to get sound out of it with the help of an USB audio interface. Add to this that there is no realtime kernel or RT patchset available for the BBB and that the BBB is quite a complex little device (it’s actually a REAL dev board). It would’ve cost me too much time to completely fathom it. No bad feelings though, the BBB is a very nice product and it sure has the slickest looks of all ARM SoC dev boards around.

Also I got a Cubieboard2 in recently. And that board has absorbed me for the last week and a half. It’s quite easy to set up (not as easy as the RPi though), has a lot of IO (yes, it has audio in and out!) and it blows both the RPi and BBB away when it comes to performance with its dual core A20 Allwinner SoC that can easily be overclocked to 1.2 GHz. Alas, no realtime kernel or RT patchset either but hey, I managed to get a RT kernel running on a Rockchip RK3066 based device so I could at least give it a try. And it worked out well. I’m now running a 3.4.61-rt77 kernel on it with a custom Debian Wheezy installation. This time I used git to keep track of the modifications I made so it was a lot easier to create a usable diff. I also patched the driver for the onboard audio codec because the hardcoded defaults were just unusable for realtime audio. Minimum number of periods was 4 and minimum buffer size was 1024. Don’t ask me why. So I’ve changed these to 2 and 16 respectively and managed to get JACK running at a respectable -p64 -n2 -r44100. Fired up some JACK clients and this little monster keeps up very well. USB audio interfaces are no problem either, I can run my Edirol UA25 in Advanced mode with -p64 -n3 -r48000 without any hitch. This is probably because the Cubieboard2 doesn’t use a Synopsys DesignWare OTG controller with out-of-tree dwc_otg drivers like the RPi but a better supported USB controller. At the moment the Cubieboard2 is the nicest ARM dev board I have laid my hands on so far.


text-align: center;

Cubieboard2

RT patchset 3.4.61-rt77 for linux-sunxi, sunxi-3.4 branch

Low latency defaults patch for sunxi-codec driver

Exit BeagleBone Black, hello Cubieboard2!

More ARM goodies II

Received the BeagleBone Black (BBB) and the MK808 with a RK3066 SoC. My first impressions are really positive. Especially the BBB is quite an awesome device that I’m probably going to use a lot in favor of the Raspberry Pi. At first glance I had something like, the BBB blows the RPi away, but as soon as I started looking for documentation on how to put Debian on it for instance it became clear that the RPi is still the device to beat. The RPi community is huge, documentation for it is well laid out and working with the RPi is just so easy. The BBB on the other hand lacks a vivid community, is $10 more expensive and a lot more difficult to work with. Take the Debian install for example, seems quite some work to get that going.

The MK808 is surely an improvement over the UG80X I already own. It comes with a HDMI port instead of a HDMI plug, has an extra USB OTG port, a heatsink, hardware serial console access, a reset button and a power indicator LED. The pre-installed Android version looks better too. I flashed my RT kernel recovery image on it, inserted the Micro SD from my UG80X and it booted without any issues. So I’m going to pursue my goal to get a real-time, low-latency environment running on a RK3066 based device on the MK808 and find another purpose for the UG80X.

Edit: Getting Debian to work on the BBB is actually quite easy: http://elinux.org/BeagleBoardDebian#Demo_Image
Next time I’ll promise to make better use of my Google skills.

More ARM goodies II

Hacking an Android TV stick, the sequel

jeremy@rk3066:~$ uname -a
Linux rk3066 3.0.36-rt58 #1 SMP PREEMPT RT Thu Jul 4 13:18:23 CEST
2013 armv7l GNU/Linux

Managed to compile and run a real-time kernel on the Android TV stick with the RK3066 SoC. Packaged the latest version of amSynth (1.4.0 which has been released recently), installed it, fired up JACK and amSynth and so far no xruns, nothing. And this is with -p64!

jackd -P84 -p32 -t2000 -dalsa -dhw:Device -n3 -p64 -r44100 -s -P

I should measure the latency of the $2 USB audio interface I’m using to find out what the total latency of this set-up is. Well, at least I got the system latency for usage with softsynths like amSynth down to 64/44100*2=3ms. Now that’s a usable situation.

jeremy@rk3066:~$ lsusb | grep -i c-media
Bus 002 Device 006: ID 0d8c:000e C-Media Electronics, Inc. Audio Adapter (Planet
UP-100, Genius G-Talk)
jeremy@rk3066:~$ cat /proc/asound/cards 0 [RK29RK1000 ]: RK29_RK1000 - RK29_RK1000 RK29_RK1000 1 [HDMI ]: ROCKCHIP_HDMI - ROCKCHIP HDMI ROCKCHIP HDMI 2 [Device ]: USB-Audio - Generic USB Audio Device Generic USB Audio Device at usb-usb20_host-1.1, full speed

A big pro of this stick is that it suffers less from SD card corruption than my RPi. Yesterday evening I wrecked up yet another SD card when testing my RPi with a real-time kernel, it’s getting a bit cumbersome. Speaking of real-time kernels, it was quite some work to apply the RT patchset to the RockChip kernel source. Had to add stuff by hand and when I finally got everything in place it wouldn’t compile. But I managed to solve all the build errors. After flashing the kernel image the TV stick wouldn’t boot of course, it hung at some point. But I quickly saw that the issue was with the SD card reader and that it was similar to the SD card reader issue on the RPi for which I found a workaround. So I added an #ifdef clause to the RockChip SD card reader driver, recompiled, reflashed and wham, it continued booting. Now I have to clean up my build directory and get a usable diff of it against the pristine RK3066 kernel sources.

Hacking an Android TV stick, the sequel

Bricking the UG802 Android TV stick

Pulled out my soldering iron, soldered a reset button and a switch to boot into recovery on the PCB and connected my UG802 clone/revision to my TV. Nothing. lsusb. Crap, it boots in flash mode. Let’s try reflashing the whole bloody thing. Well that works so the NAND is not defective or anything. Reboot. Nothing, lsusb still reports the device is in flash mode. So I removed all my soldering efforts which I really regretted because it was quite nicely done given my poor soldering skills and tried again. Still nothing. Arrrggghhhh. Enjoyed a cold Warsteiner and let it rest.

Today I brought the device with me to the office. Hooked it up to a Windows machine, ran the ROM flash tool from Finless’ custom ROM package for this device and powered it up. I was greeted with the most ugly Android boot animation I had ever seen. But at least the device works again so thanks Finless!

So now I can move on again. I had Jack1 running on it so it should be possible to turn this device into a very cheap, yet powerful alternative to do real-time, low-latency audio. Compared to the Raspberry Pi JACK already consumed way less CPU (12% on the RPi compared to 2% on the RK3066 device with the same JACK settings) and I noticed the device has some more IRQ’s so if I could get all of those threaded that should give me some more flexibility to get everything working in a more stable way. I did have to disable WiFi otherwise the whole USB stack crashed after starting JACK. Also tried with an external WiFi dongle, same issue. I can even generate xruns when pressing keys on an attached keyboard. So it’d be really nice if I had serial console access to this thing. But I’ll figure that out too. And maybe the USB part of the kernel can be tweaked to improve things on the USB level.

Bricking the UG802 Android TV stick

Zelf een real-time kernel bouwen voor Ubuntu 12.04

De real-time kernel uit de PPA van Alessio Bogani liep bij mij nog wel eens vast dus heb ik er zelf een gebouwd met de meest recente 3.2 kernel en bijbehorende RT patchset. En dit draait een stuk stabieler, nog geen lockups gehad.

Een eigen kernel bouwen is gelukkig nog steeds niet zo heel moeilijk, met Ubuntu kun je zelfs heel gemakkelijk pakketten maken met behulp van de make-kpkg utility. Na wat googlen kwam ik onderstaande handleiding tegen en simpeler kan het bijna niet.

Installeer de benodigde pakketten:

sudo apt-get install kernel-package fakeroot build-essential libncurses5-dev

Download de kernel sources en de RT patchset:

mkdir -p ~/tmp/linux-rt
cd ~/tmp/linux-rt
wget -c http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.2.28.tar.bz2
wget -c
http://www.kernel.org/pub/linux/kernel/projects/rt/3.2/patch-3.2.28-rt42.patch.bz2

Pak de kernel sources uit en patch deze met de RT patchset:

tar xjvf linux-3.2.28.tar.bz2
cd linux-3.2.28
patch -p1 < <(bunzip2 -c ../patch-3.2.28-rt42.patch.bz2)

Nu moet je de kernel nog configureren. De gemakkelijkste manier is om een bestaande kernel config te nemen, deze staan in de /boot directory van je systeem. Kopieer een config naar je werkdirectory en gebruik deze als uitgangspunt:

cp /boot/config-$(uname -r) .config

Dit commando kopieert de kernel config van de kernel die je op dat moment gebruikt. Je kunt ook de config van een andere kernel gebruiken, bijv. die van de Ubuntu lowlatency kernel aangezien deze al geoptimaliseerd is voor Linux audio toepassingen. De volgende stap is om een kernel config aan te maken met full preemption ingeschakeld aan de hand van de gekopieerde kernel config:

make oldconfig

Je kunt alle prompts wegklikken met Enter, behalve de prompt welk Preemption Model je wilt gebruiken. Selecteer daar 5 (Fully Preemtible Kernel):

Preemption Model
> 1. No Forced Preemption (Server) (PREEMPT_NONE)
  2. Voluntary Kernel Preemption (Desktop) (PREEMPT_VOLUNTARY)
  3. Preemptible Kernel (Low-Latency Desktop) (PREEMPT__LL) (NEW)
  4. Preemptible Kernel (Basic RT) (PREEMPT_RTB) (NEW)
  5. Fully Preemptible Kernel (RT) (PREEMPT_RT_FULL) (NEW)
choice[1-5]: 5 <Enter>

Workaround voor https://bugs.launchpad.net/ubuntu/+source/kernel-package/+bug/602405:

sed -rie 's/echo "+"/#echo "+"/' scripts/setlocalversion

Nu kun je de kernel gaan bouwen:

make-kpkg clean
CONCURRENCY_LEVEL=$(getconf _NPROCESSORS_ONLN) fakeroot make-kpkg
--initrd --revision=0 kernel_image kernel_headers

Als het bouwen klaar is (kan een tijd duren) kun je de kernel pakketjes installeren:

cd ..
sudo dpkg -i linux-{headers,image}-3.2.28-rt42_0_*.deb

Rebooten, nieuwe real-time kernel selecteren in je bootloader (GRUB) en je systeem zou nu moeten booten met de net gebouwde real-time kernel.

Zelf een real-time kernel bouwen voor Ubuntu 12.04